50 research outputs found

    Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    Full text link
    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.Comment: Revision submitted to JMIV (02/24/13

    Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    Get PDF
    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community

    Level Set Gait Analysis for Synthesis and Reconstruction

    No full text
    We describe a new technique to extract the boundary of a walking subject, with ability to predict movement in missing frames. This paper uses a level sets representation of the training shapes and uses an interpolating cubic spline to model the eigenmodes of implicit shapes. Our contribution is to use a continuous representation of the feature space variation with time. The experimental results demonstrate that this level set-based technique can be used reliably in reconstructing the training shapes, estimating in-between frames to help in synchronizing multiple cameras, compensating for missing training sample frames, and the recognition of subjects based on their gai

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    No full text

    Experience based treatment of head lice

    Get PDF
    Segmentation involves separating distinct regions in an image. In this note, we present a novel variational approach to perform this task within the level-sets framework. We propose an energy functional that naturally combines two segmentation techniques usually applied separately: intensity thresholding and geometric active contours. Although our method can deal with more complex statistics, we assume that the pixel intensities of the regions have Gaussian distributions, in this work. The proposed approach affords interesting properties that can lead to sensible segmentation results.

    A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    No full text
    corecore